
iproute2-ss020116 1

Tunnels over IP in Linux-2.2

Alexey N. Kuznetsov
Institute for Nuclear Research, Moscow

kuznet@ms2.inr.ac.ru

March 17, 1999

Contents

1 Instead of introduction: micro-FAQ. 1

2 Tunnel setup: basics 3

3 Tunnel setup: options 4

4 Differences 2.2 and 2.0 tunnels revisited. 6

5 Linux and Cisco IOS tunnels. 6

6 Interaction IPIP tunnels and DVMRP. 7

7 Broadcast GRE “tunnels”. 7

8 Traffic control issues. 8

1 Instead of introduction: micro-FAQ.

• Q: In linux-2.0.36 I used:

ifconfig tunl1 10.0.0.1 pointopoint 193.233.7.65

to create tunnel. It does not work in 2.2.0!

A: You are right, it does not work. The command written above is split to two
commands.

ip tunnel add MY-TUNNEL mode ipip remote 193.233.7.65

will create tunnel device with name MY-TUNNEL. Now you may configure it with:

Copyright c© 1999 A.N.Kuznetsov

2 Tunnels over IP

ifconfig MY-TUNNEL 10.0.0.1

Certainly, if you prefer name tunl1 to MY-TUNNEL, you still may use it.

• Q: In linux-2.0.36 I used:

ifconfig tunl0 10.0.0.1

route add -net 10.0.0.0 gw 193.233.7.65 dev tunl0

to tunnel net 10.0.0.0 via router 193.233.7.65. It does not work in 2.2.0! More-
over, route prints a funny error sort of “network unreachable” and after this I
found a strange direct route to 10.0.0.0 via tunl0 in routing table.

A: Yes, in 2.2 the rule that normal gateway must reside on directly connected
network has not any exceptions. You may tell kernel, that this particular route
is abnormal:

ifconfig tunl0 10.0.0.1 netmask 255.255.255.255

ip route add 10.0.0.0/8 via 193.233.7.65 dev tunl0 onlink

Note keyword onlink, it is the magic key that orders kernel not to check for con-
sistency of gateway address. Probably, after this explanation you have already
guessed another method to cheat kernel:

ifconfig tunl0 10.0.0.1 netmask 255.255.255.255

route add -host 193.233.7.65 dev tunl0

route add -net 10.0.0.0 netmask 255.0.0.0 gw 193.233.7.65

route del -host 193.233.7.65 dev tunl0

Well, if you like such tricks, nobody may prohibit you to use them. Only do not
forget that between route add and route del host 193.233.7.65 is unreachable.

• Q: In 2.0.36 I used to load tunnel device module and ipip module. I cannot
find any tunnel in 2.2!

A: Linux-2.2 has single module ipip for both directions of tunneling and for all
IPIP tunnel devices.

• Q: traceroute does not work over tunnel! Well, stop... It works, only skips
some number of hops.

A: Yes. By default tunnel driver copies ttl value from inner packet to outer
one. It means that path traversed by tunneled packets to another endpoint is
not hidden. If you dislike this, or if you are going to use some routing protocol
expecting that packets with ttl 1 will reach peering host (f.e. RIP, OSPF or
EBGP) and you are not afraid of tunnel loops, you may append option ttl 64,
when creating tunnel with ip tunnel add.

• Q: ... Well, list of things, which 2.0 was able to do finishes.

iproute2-ss020116 3

Summary of differences between 2.2 and 2.0.

• In 2.0 you could compile tunnel device into kernel and got set of 4 devices
tunl0 ... tunl3 or, alternatively, compile it as module and load new module for
each new tunnel. Also, module ipip was necessary to receive tunneled packets.

2.2 has one module ipip. Loading it you get base tunnel device tunl0 and
another tunnels may be created with command ip tunnel add. These new
devices may have arbitrary names.

• In 2.0 you set remote tunnel endpoint address with the command ifconfig ...
pointopoint A.

In 2.2 this command has the same semantics on all the interfaces, namely it sets
not tunnel endpoint, but address of peering host, which is directly reachable via
this tunnel, rather than via Internet. Actual tunnel endpoint address A should
be set with ip tunnel add ... remote A.

• In 2.0 you create tunnel routes with the command:

route add -net 10.0.0.0 gw A dev tunl0

2.2 interprets this command equally for all device kinds and gateway is required
to be directly reachable via this tunnel, rather than via Internet. You still may
use ip route add ... onlink to override this behaviour.

2 Tunnel setup: basics

Standard Linux-2.2 kernel supports three flavor of tunnels, listed in the following
table:

Mode Description Base device
ipip IP over IP tunl0
sit IPv6 over IP sit0
gre ANY over GRE over IP gre0

All the kinds of tunnels are created with one command:

ip tunnel add <NAME> mode <MODE> [local <S>] [remote <D>]

This command creates new tunnel device with name <NAME>. The <NAME> is
an arbitrary string. Particularly, it may be even eth0. The rest of parameters set
different tunnel characteristics.

• mode <MODE> sets tunnel mode. Three modes are available now ipip, sit and
gre.

4 Tunnels over IP

• remote <D> sets remote endpoint of the tunnel to IP address <D>.

• local <S> sets fixed local address for tunneled packets. It must be an address
on another interface of this host.

Both remote and local may be omitted. In this case we say that they are zero
or wildcard. Two tunnels of one mode cannot have the same remote and local.
Particularly it means that base device or fallback tunnel cannot be replicated.1

Tunnels are divided to two classes: pointopoint tunnels, which have some not
wildcard remote address and deliver all the packets to this destination, and NBMA

(i.e. Non-Broadcast Multi-Access) tunnels, which have no remote. Particularly,
base devices (f.e. tunl0) are NBMA, because they have neither remote nor local

addresses.

After tunnel device is created you should configure it as you did it with another
devices. Certainly, the configuration of tunnels has some features related to the fact
that they work over existing Internet routing infrastructure and simultaneously create
new virtual links, which changes this infrastructure. The danger that not enough
careful tunnel setup will result in formation of tunnel loops, collapse of routing or
flooding network with exponentially growing number of tunneled fragments is very
real.

Protocol setup on pointopoint tunnels does not differ of configuration of another
devices. You should set a protocol address with ifconfig and add routes with route

utility.

NBMA tunnels are different. To route something via NBMA tunnel you have to
explain to driver, where it should deliver packets to. The only way to make it is to
create special routes with gateway address pointing to desired endpoint. F.e.

ip route add 10.0.0.0/24 via <A> dev tunl0 onlink

It is important to use option onlink, otherwise kernel will refuse request to create
route via gateway not directly reachable over device tunl0. With IPv6 the situation
is much simpler: when you start device sit0, it automatically configures itself with
all IPv4 addresses mapped to IPv6 space, so that all IPv4 Internet is really reachable

via sit0! Excellent, the command

ip route add 3FFE::/16 via ::193.233.7.65 dev sit0

will route 3FFE::/16 via sit0, sending all the packets destined to this prefix to
193.233.7.65.

1This restriction is relaxed for keyed GRE tunnels.

iproute2-ss020116 5

3 Tunnel setup: options

Command ip tunnel add has several additional options.

• ttl N — set fixed TTL N on tunneled packets. N is number in the range 1–255.
0 is special value, meaning that packets inherit TTL value. Default value is:
inherit.

• tos T — set fixed tos T on tunneled packets. Default value is: inherit.

• dev DEV — bind tunnel to device DEV, so that tunneled packets will be routed
only via this device and will not be able to escape to another device, when route
to endpoint changes.

• nopmtudisc — disable Path MTU Discovery on this tunnel. It is enabled by
default. Note that fixed ttl is incompatible with this option: tunnels with fixed
ttl always make pmtu discovery.

ipip and sit tunnels have no more options. gre tunnels are more complicated:

• key K — use keyed GRE with key K. K is either number or IP address-like dotted
quad.

• csum — checksum tunneled packets.

• seq — serialize packets.

NB. I think this option does not work. At least, I did not test it, did not debug it

and even do not understand, how it is supposed to work and for what purpose Cisco

planned to use it.

Actually, these GRE options can be set separately for input and output directions
by prefixing corresponding keywords with letter i or o. F.e. icsum orders to accept
only packets with correct checksum and ocsum means, that our host will calculate
and send checksum.

Command ip tunnel add is not the only operation, which can be made with
tunnels. Certainly, you may get short help page with:

ip tunnel help

Besides that, you may view list of installed tunnels with the help of command:

ip tunnel ls

Also you may look at statistics:

ip -s tunnel ls Cisco

6 Tunnels over IP

where Cisco is name of tunnel device. Command

ip tunnel del Cisco

destroys tunnel Cisco. And, finally,

ip tunnel change Cisco mode sit local ME remote HE ttl 32

changes its parameters.

4 Differences 2.2 and 2.0 tunnels revisited.

Now we can discuss more subtle differences between tunneling in 2.0 and 2.2.

• In 2.0 all tunneled packets were received promiscuously as soon as you loaded
module ipip. 2.2 tries to select the best tunnel device and packet looks as
received on this. F.e. if host received ipip packet from host D destined to our
local address S, kernel searches for matching tunnels in order:

1 remote is D and local is S
2 remote is D and local is wildcard
3 remote is wildcard and local is S
4 tunl0

If tunnel exists, but it is not in UP state, the tunnel is ignored. Note, that if
tunl0 is UP it receives all the IPIP packets, not acknowledged by more specific
tunnels. Be careful, it means that without carefully installed firewall rules
anyone on the Internet may inject to your network any packets with source
addresses indistinguishable from local ones. It is not so bad idea to design
tunnels in the way enforcing maximal route symmetry and to enable reversed
path filter (rp_filter sysctl option) on tunnel devices.

• In 2.2 you can monitor and debug tunnels with tcpdump. F.e. tcpdump -i Cisco

-nvv will dump packets, which kernel output, via tunnel Cisco and the packets
received on it from kernel viewpoint.

5 Linux and Cisco IOS tunnels.

Among another tunnels Cisco IOS supports IPIP and GRE. Essentially, Cisco setup
is subset of options, available for Linux. Let us consider the simplest example:

interface Tunnel0

tunnel mode gre ip

tunnel source 10.10.14.1

tunnel destination 10.10.13.2

iproute2-ss020116 7

This command set translates to:

ip tunnel add Tunnel0 \

mode gre \

local 10.10.14.1 \

remote 10.10.13.2

Any questions? No questions.

6 Interaction IPIP tunnels and DVMRP.

DVMRP exploits IPIP tunnels to route multicasts via Internet. mrouted creates IPIP
tunnels listed in its configuration file automatically. From kernel and user viewpoints
there are no differences between tunnels, created in this way, and tunnels created
by ip tunnel. I.e. if mrouted created some tunnel, it may be used to route unicast
packets, provided appropriate routes are added. And vice versa, if administrator has
already created a tunnel, it will be reused by mrouted, if it requests DVMRP tunnel
with the same local and remote addresses.

Do not wonder, if your manually configured tunnel is destroyed, when mrouted
exits.

7 Broadcast GRE “tunnels”.

It is possible to set remote for GRE tunnel to a multicast address. Such tunnel
becomes broadcast tunnel (though word tunnel is not quite appropriate in this case,
it is rather virtual network).

ip tunnel add Universe local 193.233.7.65 \

remote 224.66.66.66 ttl 16

ip addr add 10.0.0.1/16 dev Universe

ip link set Universe up

This tunnel is true broadcast network and broadcast packets are sent to multicast
group 224.66.66.66. By default such tunnel starts to resolve both IP and IPv6 ad-
dresses via ARP/NDISC, so that if multicast routing is supported in surrounding
network, all GRE nodes will find one another automatically and will form virtual
Ethernet-like broadcast network. If multicast routing does not work, it is unpleasant
but not fatal flaw. The tunnel becomes NBMA rather than broadcast network. You
may disable dynamic ARPing by:

echo 0 > /proc/sys/net/ipv4/neigh/Universe/mcast_solicit

and to add required information to ARP tables manually:

8 Tunnels over IP

ip neigh add 10.0.0.2 lladdr 128.6.190.2 dev Universe nud permanent

In this case packets sent to 10.0.0.2 will be encapsulated in GRE and sent to 128.6.190.2.
It is possible to facilitate address resolution using methods typical for another NBMA
networks f.e. to start user level arpd daemon, which will maintain database of hosts
attached to GRE virtual network or ask for information dedicated ARP or NHRP
server.

Actually, such setup is the most natural for tunneling, it is really flexible, scalable
and easily managable, so that it is strongly recommended to be used with GRE
tunnels instead of ugly hack with NBMA mode and onlink modifier. Unfortunately,
by historical reasons broadcast mode is not supported by IPIP tunnels, but this
probably will change in future.

8 Traffic control issues.

Tunnels are devices, hence all the power of Linux traffic control applies to them. The
simplest (and the most useful in practice) example is limiting tunnel bandwidth. The
following command:

tc qdisc add dev tunl0 root tbf \

rate 128Kbit burst 4K limit 10K

will limit tunneled traffic to 128Kbit with maximal burst size of 4K and queuing not
more than 10K.

However, you should remember, that tunnels are virtual devices implemented in
software and true queue management is impossible for them just because they have
no queues. Instead, it is better to create classes on real physical interfaces and to
map tunneled packets to them. In general case of dynamic routing you should create
such classes on all outgoing interfaces, or, alternatively, to use option dev DEV to
bind tunnel to a fixed physical device. In the last case packets will be routed only
via specified device and you need to setup corresponding classes only on it. Though
you have to pay for this convenience, if routing will change, your tunnel will fail.

Suppose that CBQ class 1:ABC has been created on device eth0 specially for tunnel
Cisco with endpoints S and D. Now you can select IPIP packets with addresses S and
D with some classifier and map them to class 1:ABC. F.e. it is easy to make with rsvp

classifier:

tc filter add dev eth0 pref 100 proto ip rsvp \

session D ipproto ipip filter S \

classid 1:ABC

If you want to make more detailed classification of sub-flows transmitted via tun-
nel, you can build CBQ subtree, rooted at 1:ABC and attach to subroot set of rules
parsing IPIP packets more deeply.

